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lntroduct ion 

To conquer new frontiers, such as manned space travel, we continue to develop 

technologies of ever increasing sophistication. As a consequence, it is often the case 

that the people interacting with this technology, those actually operating or repairing 

complex electronic or mechanical devices, do not understand how the technology 

functions. They can not correctly rationalize steps of given operational and repair 

procedures: why manipulating or observing some aspect of a device satisfies a goal 

associated with a procedure or which component failures could possibly give rise to an 

observed abnormality and how the abnormality is caused by the failure. 

Unfortunately, limited understanding results in limited performance. Operators that 

must follow procedures by rote from checklists and make errors of omission or 

commission that would be obvious with an understanding of the reasons for actions. 

These operators often are not able to demonstrate effective flexibility in unexpected 

circumstances and can not troubleshoot a device when a component fails. 

Qualitative mechanism models have been proposed as one form of basis for useful 

methods of reasoning about complex devices and rationalizing steps in operational and 

troubleshooting procedures. A qua/itafive mechanism model is an abstract, symbolic 

model of a device's structure and function. It approximates more precise mathematical 

models, simplifying their complex algebraic representations yet being sufficiently 

formal to allow straightforward reasoning about the effects of changes in device state. 

A complex device is modeled as a structure of interconnected components: these 

components may be grouped into substructures which interact in qualitatively 

different ways. Domains of the descriptive variables that represent aspects of a 

component's function are restricted to symbolic value sets of small size, determined 

by intervals of similar qualitative behavior and points at which the component's 
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behavior qualitatively changes. Constraints among variable values describe the 

behavior of a component for possible combinations of values for its descriptive 

variables (i.e., qualitiative states). A qualitative mechanism model is completed by a 

set of statements that describe the interconnection of device components. A change in 

the state of some component can be propagated to connected components when 

appropriate. 

Changes in component state may arise from operator manipulation of device 

controls or from failure of particular elements of device components. Qualitative 

mechanism models can be used to explain why a given operational sequence will 

produce a desired outcome by describing the propagation of the effects of a component's 

state change through other connected components over time. Similarly, qualitative 

models of complex systems can serve as bases for predicting what abnormalities will 

be observed when a given failure occurs or, reasoning in the other direction, for 

suggesting possible failures that could account for observed abnormalities. For 

example, one may want to explain why stepping on the gas pedal results in the 

acceleration of a running car. A straightforward qualitative model involving 

representations of fuel line, carbuerator, drive shaft, differential and wheels as 

components could propogate increased fuel flow through greater rates of combustion 

and energy release to increased torque and rates of turning of the drive train, etc. If 

no acceleration is observed, the model could provide suggestions as to possible faults 

among those components, e.g., some blockage in the fuel line preventing the expected 

increase in fuel flow to the carbuerator. 

When rationalizing elements of troubleshooting procedures, one desires to 

account for the processes whereby a possible fault could give rise to observed 

symptoms and to explain why replacement or adjustment of some component could be 

expected to alleviate a problem. Reasoning about operational plans that include 

interactions with complex systems requires not only representations of the goal 



structure of the plans but representations of the mechanisms being manipulated. 

Qualitative models are approximate, indicating how changes are propagated within a 

complex device. Thus, they can serve to focus attention on relevant components of the 

device for more detailed, possibly quantitative, consideration. This focusing of 

activity seems to be a desirable feature for automated assistants to human operators. 

NASA's manned space program affords many opportunities for exploring the 

applicability of computer-based, qualitative mechanism models to problems of 

complex system monitoring and control. Astronauts find themselves dealing with 

complex systems that they do not understand well; computers perform many important 

control functions. The potential is great for the application of qualitative models and 

associated inference tools as assistants to astronauts in reasoning about the function 

and operation of space shuttle or space station systems. Results of qualitative analyses 

could be presented to operators as summaries of system behaviors and explanations of 

procedural steps. Computer-generated rationalizations of considered actions or of 

possible faults could become important aspects of improved, cooperative, man- 

machine control systems. 

As a consequence of the above discussion, this research project has focussed on 

the following issues: 

[l] Developing an interactive environment for specifying and editing qualitative 

mechanism models and for simulating the behavior implied by models under various 

conditions. 

[2] Defining a qualitative mechanism model for a particular system. We 

considered the ORS (Orbital Refueling System) to coordinate with ongoing research on 

this system being conducted at NASA Ames Research Center. 

[3] Determine operational and troubleshooting procedures on the basis of the 

qualitative models and rationalize (explain) procedures in terms of elements of the 

models. 



Qualitative Reasoning and Structural Abstraction 

Methods for the formalization and formulation of qualitative mechanism models 

for electronic and mechanical systems have become topics of widespread interest 

within the artificial intelligence research community. This is evidenced by the recent 

publication of a significant number of articles discussing principles and initial 

applications of qualitative modeling, including a complete volume of the journal 

Artificial lntelligence [l]. Several articles in that volume constitute the primary 

intellectual roots from which our proposed research springs. The paper by Brown and 

Dekleer [2] discusses general criteria for the design and evaluation of qualitative 

models and presents elements for the representation of device function and structure. 

Confluences, i.e., simplified linear equations among derivatives of model variables, are 

proposed as bases for describing device function and for generating descriptions of the 

dynamic behavior of a system. Kuipers [lo] defines a related approach to function 

representation, noting direct (increasing) and indirect (decreasing) relations between 

model variables and declaring necessary correspondences between landmark values of 

the variables. In both approaches one can characterize the behavior of a device as 

transitions among "states" defined in terms of model variables being at or moving 

between predefined landmark values. For example, in modeling the behavior of frozen 

water as heat is applied, the water temperature is initially below freezing and rises to 

the freezing point (a landmark, at which point behavioral properties of water change 

in the transition to liquid state), then the temperature rises to the boiling point 

(another landmark, with transition to the gaseous state) and continues beyond that. 

Thus, a straightforward qualitative model of this system would represent five states 

based upon a continuously increasing temperature passing through two landmark 

values. 



When rationalizing elements of troubleshooting procedures, one desires to 

account for the processes whereby a possible fault could give rise to observed 

symptoms and to explain why a replacement or adjustment of some component could be 

expected to alleviate a problem. Davis [3] and Genesereth [6] describe related 

approaches to fault isolation based upon formal device design specifications. Davis 

demonstrates a means of diagnostic reasoning that employs hierarchic representations 

of device structure and function in the isolation of possible sources of incorrect 

behavior to more and more specific components. This approach propogates actual 

values at different levels of abstraction, looking for locations where incorrect values 

can be substituted to produce observed errors, then continuing the process within 

candidate substructures until primitive, repairable faults are determined. For 

example, in the VLSl domain a fault may be isolated to an adder structure by 

considering integer value propogations; the adder circuits can then be analyzed at the 

bit level and eventually a wire or pull-up at the voltage level to correct a faulty design 

or realization. Genesereth presents a propositional logic approach to the formalization 

of device design specifications and the defines techniques for the use of such 

specifications in the derivation of relevant tests during the process of diagnaostic fault 

isolation. 

The research we have conducted coordinates well with other ongoing efforts 

supported by NASA. Reasoning about plans that include interactions with complex 

systems requires not only representations of the hierarchic goal structure of the 

procedure but also representations of the mechanisms being manipulated. 

Rationalizations as to why steps are taken (or considered) refer to tasks and their 

subgoals; reasons why these steps can be expected to produce the desired reults 

require inference that is based upon abstract mechanism models. Qualitative models 

are approximate, indicating how changes are propogated within a complex device. In 

work closely related to our effort, Scar1 etal. at Mitre [15] have developed LES, a 



frame-based expert system for representing structure and function of complex control 

systems, which is then used to perform diagnosis. Yoon and Hammer [17] propose 

research investigating the design of a cooperative diagnosis environment that would 

employ a qualitative model as knowledge base. 

Another research perspective supported by NASA is that of human factors in 

man-machine interaction. One machine of interest is the airplane. Researchers under 

Rouse have been exploring the induction of pilot knowledge from behavior sequences. 

Their representation of knowledge is primarily rule-based, attempting to associate 

flying conditions with pilot actions in reactive situations involving air space intruders 

[ l l ] .  Much of their work has focused on the evaluation of proposed sets of rules, 

attempting to find small sets of rules which cover most of the observed behavior (i.e., 

account for observed variance in pilot behavior) [12]. 

Issues of man-machine cooperation range from the media used in presenting 

assistance to when and what is presented and who has the initiative [7]. Research 

indicates that people appear to work best when they are responsible for making 

decisions: thus, systems which can assist them by accurately focusing attention and 

summarizing relevant information are desirable [13]. Researchers that developed the 

STEAMER system [8] found that graphic displays representing system configuration 

and change were important in explanation and understanding. 

A primary goal of our research has been to determine a means for simplifying the 

generation and explanation of plans for the operation and diagnosis of complex 

hydraulic systems. The traditional techniques of qualitative mechanism modeling 

described above have focussed on techniques for simplifying the values and constraints 

involved in reasoning about physical systems. We have concentrated on finding a 

method that would reduce the conceptual complexity of the structure of a hydraulic 

system by aggregating components into isolated subsystems where possible. The result 



of our efforts has been a new structural abstaction, the cluster-based approach to 

modeling hydraulic system structure. 

We consider the Orbital Refueling System, designed for use by space shuttle 

crews in the refueling of communication and other earth satellites, as a typical 

example of a hydraulic system that would be useful for space application. We begin 

our presentation with a description of the Orbital Refueling System, which will 

provide problem instances for later discussion. We then introduce our notions of 

cluster-based modeling, defining terms and noting relevant implications. Finally, we 

discuss the application of cluster-based modeling to the generation and explanation of 

standard operating and troubleshooting procedures. 

The Orbital Refueling System 

The Orbital Refueling System (ORS) is an experimental system designed for fuel 

management and transfer, needed to accomplish the replenishment of propellant and 

other liquid consumables on earth-orbiting satellites. The notion is that a space 

shuttle (or other space tanker) could rendezvous with an orbiting satellite: an 

astronaut could go out, connect the ORS to the satellite and transfer liquid fuel to it, 

allowing the satellite to remain in orbit and function much longer than at present. 

The architectural design of the hydraulic subsystem of the ORS consists of two 

primary subsystems: pressurization and fuel transfer. Nitrogen gas, managed under 

high pressure within the pressurization subsystem, provides the propellant force for 

the fuel transfer subsystem. The two subsystems interact at two fuel tanks, each 

containing an internal bladder whereby pressure from the nitrogen gas in the 

presurization subsystem is transmitted to the hydrazine fuel found in the fuel transfer 

subsystem. The pressure provides the potential force to move the fuel between the 

tanks or from a tank to an external device, e.g., a satellite. 



The pressurization subsystem, as shown in Figure 1, consists of a tank GTK 

holding nitrogen gas under high pressure, which is sensed by pressure gauge @P6. 

GTK is connected through a pipe and T-junction to two valves in parallel, V I  and V2 

(where V2 is preceded by an orifice 01). These valves are then connected through 

parallel pipes and another T-junction to orifice 05  and pressure regulator REG. 

Following REG is another T-junction, one branch leading to a relief valve RV and the 

other branch to a check valve CV. The check valve branch then has a pressure gauge 

@P5 sensing pressure in the pipe that leads to another T-junction. This split results 

in two paths, each eventually leading to a fuel tank. One path has two valves in 

succession, V3 and V7, prior to fuel tank TK1, while the other has valves V11 and V10 

prior to tank TK2. Before the branches leading to the fuel tanks was another T- 

junction, where a side path leads, through two valves VI3  and V17, to sump0. 

Conceptually, sump0 is infinite size tank having pressure lower than any component of 

the pressurization system (i.e., atmospheric pressure). 

The order in which components were given above reflects the order that 

components would be encountered by a gaseous nitrogen flow from GTK during 

pressurization of the fuel tanks. Flow is always from a high pressure source, in this 

case GTK, to a lower pressure sink, here the fuel tanks (TK1 or TK2). Each fuel tank 

is split by an internal bladder which transmits the pressure of the gaseous nitrogen to 

the liquid hydrazine fuel, allowing the fuel to be transferred between fuel tanks or to 

external satellites. We will focus on the pressurization subsystem of the ORS in our 

discussions that follow. The approach we consider for the representation of the 

pressurization subsystem can be applied to the fuel transfer subsystem as well. 
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Cluster-Based Representation 

In our description of the pressurization subsystem of the ORS above, we noted 

that a hydraulic system can be characterized as a set of interconnected components. 

Each component can be represented by a set of descriptive variables that capture 

relevant aspects of the component's internal state, a set of ports, each represented by a 

set of variables that capture the component's interface with other components, and a 

set of constraints among these variables that capture the behavior of the component. A 

set of constraints that identify port variables from various components represent the 

interconnections among components. 

According to this perspective, a hydraulic system model can be described by a 

component graph, with vertices representing components (including pipes) and 

edges representing their port-to-port connections. The graph representing the design 

of the ORS which is presented in Figure 1 differs slightly from a component graph in 

that pipes are drawn as edges rather than vertices. System behavior can be generated 

from models consisting solely of representations of components and their port-to-port 

interconnections. STEAMER took a quantiative, interactive modeling approach to the 

representation of hydraulic systems based solely on component-level models [SI. 

However; this modeling approach may not necessarily capture the most appropriate 

level of abstraction for describing system behaviors of interest. Our concerns are 

with the clarification and explanation of system control and troubleshooting 

procedures. Since hydraulic systems can be architecturally complex, with many 

components and interconnections, we wish to find a level of structural abstraction 

above the component level, if possible. 

The key element in our approach to the higher-level representation of hydraulic 

systems will be the notion of a cluster. A cluster consists of a maximal, connected 



subset of system components that does not contain a closed valve. According to this 

definition, clusters are separated by closed valves. A closed valve effectively isolates 

the behaviors of its neighbors; as such, a set of closed valves partitions a hydraulic 

system into functionally independent subsystems. With each cluster we associate a set 

of boundary elements, being the closed valves that separate it from other 

(neighboring) clusters. We define a cluster graph, which can be thought of as an 

overlay to the component graph, wherein vertices represent clusters and edges 

represent boundary elements (Le., closed valves). Two clusters are adjacent in the 

cluster graph if they have a common boundary element; there may be more than one 

boundary element shared by a pair of clusters. The cluster graph for the 

pressurization subsystem of the ORs, represented in its proposed launch 

configuration, is shown in Figure 2. 

From a behavioral standpoint, a cluster can be in only one of two qualitative 

states: stable, where flow equals 0 (i.e., no flow occurs) and pressures are equal and 

constant throughout the cluster: and unstable, where flow is greater than 0, directed 

along flowpath(s) from a source of higher pressure to a sink of lower pressure within 

the cluster. In each unstable cluster there exists one or more flowpaths. A flowpath 

is a sequence of components and component ports, beginning with a tank (or pump) 

that is a source of high pressure and ending with a tank (or sump0) that is a sink of 

low pressure. Pressure values decrease from source to sink as resistances are 

encountered along the flowpath. The notion of a flowpath is fundamental to 

quantitiative analysis of hydraulic systems. Quantitative values for pressure drops 

and flow rates depend upon the pressures and resistances associated with components 

along a complete flowpath; for example, flow rate depends upon the pressure difference 

between source and sink and the sum of resistances along the flowpath. 

Assuming finite sources and sinks, an unstable qualitative state tends toward 

stability (in the absence of external addition of material or thermal energy that would 



LAUNCH CONFIGURATION 

C1: GTK, 01, @P6 

C2: 05, REG, CV, @P5 
V3, V7, TK1 , @P1 

c3: 

SUMPO c2 c1 
v2 

RV v11 I c4: 

c5: 

C6: TK2 , @P2 

1 
c5 

v10 I 
C6 

SUMPO: 

Pipes and Junctions not included i n  c luster component l ist ings. 

Figure 2. Cluster-Based Representation of 
ORS Launch Configuration 



raise pressures within the system); pressure values move toward equality and flow 

rates decrease. Components such as pressure regulators, check valves and relief 

valves automatically change the clustering when pressure values reach critical 

thresholds during the evolution of an unstable qualitative state. For example, a 

pressure regulator will not allow the pressure (relative to sump0) at its output side 

to rise above a specified pressure rating. As the output pressure reaches this limit, 

the regulator valve closes, resulting in two clusters that are stable at different 

pressures. If the cluster at the output side has its pressure subsequently lowered, the 

pressure regulator will open automatically, creating flow into the output side of the 

regulator to the reunited cluster (assuming the pressure on the input side has 

remained higher than the output pressure rating of the pressure regulator). 

By opening and closing valves, one can change the cluster configuration of a 

system. By opening a valve, one most often creates an unstable cluster, resulting in 

the movement of gas or fluid within a hydraulic system. By closing a valve, one can 

eliminate an unstable cluster, cutting a flowpath and creating two stable clusters. It is 

the creation and elimination of unstable clusters that is the primary goal of most 

standard operating procedures for such systems. Through instability, work is 

accomplished (Le., material is moved within the system); through stability, potential 

for work is maintained. In our research, we will investigate the use of cluster-based 

modeling of hydraulic systems as a basis for planning and explaining actions that are 

taken during standard operating and diagnostic procedures. 

Cluster-based Reasoning: System Operation 

We begin with some useful definitions. A hydraulic system is always in some 

current configuration, being a set of clusters and associated boundary elements, as 

determined by the valves that are currently closed. Each cluster is in a current 



cluster state, being one of the two qualitative states described above. Detailed 

specifications for each of the qualitative states are assumed to be included, such as 

some, possibly qualitative, measure of the pressure relative to sump0 for a stable 

cluster and the flowpaths that exist in an unstable cluster. The current system 

state is simply the combination of current cluster states. 

Given a current system state, we can reason about the future states of the system 

by a form of qualitative simulation according to the following two rules: 

Rule 7 :  If all clusters are stable, then the current system state will continue 

until an external change in the current configuration is made. 

Rule 2: If a cluster is unstable, it will become stable, either through 

culmination of change in the qualitative state or through a change made to the current 

con figuration. 

When all clusters are stable, no change can occur without external influence. All 

pressures are equal throughout each cluster, so no flow can occur. Operator- 

commanded changes to valve settings or faults occurring in system components may 

change the current configuration and disrupt the overall stability. During instability, 

the directions of change for pressure values and flow rates at various locations within 

a cluster tend toward reestablishment of stability, as discussed in the qualitative state 

descriptions given above. The time it takes to reach stability and the quantitative 

values of pressures relative to sump0 in the resultant stable state depend upon 

properties of components in the cluster and upon the initial pressures and capacities 

involved. If more than one cluster is unstable, it is generally unclear, when 

reasoning at a qualitative level, which cluster will reach stability first. 

Operations planning is the process of determining a sequence of actions that will . 

transform a given, current state into one satisfying a set of goal constraints. For 

standard operating procedures, the usual goal constraints are to raise or lower the 

pressure (AP+ or AP-) at some location and to create or alter a flow (AF+ or AF-) 



past a given component on a flowpath in a certain direction or to stop a flow (AFO) past 

a certain location. How can our cluster-based approach to hydraulic system 

representation assist us in generating standard operating procedures that satisfy these 

types of goals? 

To raise (lower) the pressure at some location L, one must merge the cluster 

containing location L with another cluster having higher (lower) pressure: this 

results in a new cluster with pressure approaching or stabilizing at some value 

between the two initial values. By merging clusters, we mean opening a valve on the 

boundary between two clusters that are adjacent, thereby forming a composite, or 

merged, cluster. If no adjacent cluster has higher (lower) pressure, a subgoal of 

raising (lowering) the pressure of an adjacent cluster is generated and the search for 

a problem solution continues in a recursive fashion. This search is carried out in the 

cluster graph, which normally can be expected to be at least an order of magnitude 

lower in complexity than the underlying component graph. Search is focused 

immediately on the relevant components, the closed valves that lie on cluster 

boundaries. To achieve more precise, quantitative pressure changes requires 

reference to initial pressures, tank capacities and other component specifications 

(such as ratings for orifices or pressure regulators) that lie on the connecting flow 

paths or requires active monitoring of the pressure changes in real time during the 

subsequent unstable state. 

To create a flow (AF+ or AF-) past a certain location in a certain direction (+ or 

-) requires that one put that location in an unstable cluster on a flowpath with a high 

pressure source and a low pressure sink on appropriate sides of the location in 

question. This requires reasoning at both levels of cluster and component topologies. 

The plan will again involve opening valves on the boundaries of appropriate adjacent 

clusters, thereby merging them into a single unstable cluster containing a flowpath of 

the desired form. To stop a flow (AFO) past some location, one can cut off the source of 



higher pressure by closing a valve on the flowpath between the location and the source, 

thereby isolating the high pressure source in a neighboring cluster, or one can 

disconnect the sink from the location, isolating the sink in a neighboring cluster. 

With an understanding of the two basic qualitative states of clusters and the usual 

goals for standard operations as discussed above, we believe we will be able to generate 

plans for and explain most actions performed during standard operation. 

Computationally, the cluster-based representation lowers the complexity of the search 

for relevant flow paths. First, search proceeds in the cluster graph for a path between 

clusters having the desired pressure relationship. The overall flowpath is determined 

by joining subpaths, found by searching within clusters, that connect valves on 

boundaries or that connect a valve with a source or sink of pressure. 

To demonstrate our approach, consider the operating goal of raising the pressure 

in fuel tank TK1 of the ORs, given the launch configuration shown in cluster-based 

form by Figure 2. At launch, the pressure in the pressurization tank GTK is greater 

than that in all other clusters (which are assumed to have approximately equal 

pressures). A trace of our cluster-based problem solving technique, reflecting its 

recursive, means-ends manner, would be as follows: 

1. In order to raise the pressure at TK1 , we must merge its cluster (C2) 

with a neighboring cluster having higher pressure. 

2. Cluster C2 has three neighboring clusters (Cl, C3, and C5), 

only one (Cl) of which has pressure higher than C2. 

3. We have the goal of merging C1 and C2, by opening a valve on their boundary. 

4. We find there are two valves (V1 and V2) on the boundary between C1 and C2. 

5. We open V1 to create an unstable cluster, raising the pressure at TK1. 



It is important to note that our search for an operating procedure proceeds 

through the cluster-graph representation of the system. In this case, we did not 

consider the other components in cluster C2 during our search. As noted before, the 

cluster graph is typically much simpler than the component graph of a hydraulic 

system. Any specification of the final quantitative pressure desired in TK1 can now be 

addressed by further refinement of the qualitatively determined solution. This could 

involve determining the length of time to leave the valve open by consideration of 

parameters characterizing system components on the flowpath or simply monitoring 

the actual pressure increase in TK1 until the goal is reached. When the specified 

pressure is reached, the goal of halting the flow into TK1 can be satisfied by closing 

one of the open valves ( V l ,  V3, or V7) on the flowpath within the unstable cluster. 

Cluster-Based Reasoning: System Troubleshooting 

Troubleshooting is the problem solving process whereby aspects of a system's 

behavior that have become inconsistent with system specifications are again made to 

satisfy those specifications. System specifications can be seen as goal constraints on 

the behavior of the system, and thus troubleshooting is inherently a problem solving 

or planning process. We have previously discussed troubleshooting as a problem 

solving process involving three interrelated problem spaces: Observation Space, 

Diagnosis Space, and Repair Space [4]. Problem solving in Observation Space is 

concerned with the design of test procedures and the interpretation of their results in 

the form of fault-related symptoms. Problem solving in Diagnosis Space is concerned 

with reasoning about the relationships between observed symptoms and possible 

faults, managing the current set of possible faults, and proposing symptoms of interest 

for further observation. Problem solving in Repair Space is concerned with 



generating plans for the replacement or adjustment of likely faulted components or 

with the changing of standard operating procedures to avoid ill effects of likely faults 

(i.e., generating work-arounds). 

Faults refer to incorrect operating states of system components. An incorrect 

operating state results in component behaviors that differ from those specified in a 

component's definition. The outputs of these incorrect component behaviors are then 

propagated through other components of the system, eventually producing undesired 

changes to observable aspects of overall system behavior. These noticeable changes in 

system behavior are symptoms of the component fault. Diagnostic reasoning focuses 

on the problem of associating observed symptoms with possible incorrect operating 

states of particular system components or, in other words, determining those faulted 

components whose altered behaviors could have their effects propagated through the 

system to produce the observed symptoms. 

Troubleshooting must deal with component-level models and these component- 

level models must include fault models, Le., descriptions of how a component's 

behavior is altered when the component is faulted in various possible ways. Below we 

first describe component models for three basic hydraulic system components. We 

then discuss how the cluster-based approach to hydraulic system modeling will assist 

us in the generation of fault hypotheses in Diagnosis Space that account for observed 

symptoms. Finally, we note how a cluster-based approach to hydraulic system 

modeling can be useful in generating plans in Observation Space to determine the 

presence of relevant symptoms. Symptoms themselves will be defined relative to the 

qualitative state of the cluster in which they appear, the affected cluster. 

The two simplest components in hydraulic systems are the pipe and the orifice. 

A pipe offers no resistance to material flow, and thus transmits flow and pressure 

from its input port to its output port without change. An orifice does offer resistance 

to flow, and thus reduces overall cluster flow and produces a drop in pressure Pdrop 



between its input and output ports according to the constraint Pdrop = Flow 

Resistance. A valve is an important component type in a hydraulic system. It is a 

commandable component, and thus is a primary focus of attention during the creation 

and execution of operational procedures. When open, a valve acts like a pipe, 

transmitting flow and pressure without resistance. When a valve is closed, it does not 

transmit pressure or flow: its two ports act as if they were part of two separate 

worlds. In such cases, the valve will be part of the boundary between neighboring 

clusters. Note that a closed valve’s ports may be connected through other paths, to 

remain within a single cluster. 

To complete a model sufficient for diagnostic reasoning, we must represent the 

possible faults for each component type. The qualitative values of interest at any time 

for a given location within a hydraulic system are flow and pressure and their 

derivatives with respect to time (i.e., whether they are increasing, decreasing or 

steady). When reasoning about a system for diagnostic purposes, we are mostly 

concerned with how observed values differ from expected, or normal, levels [4,5]. 

Thus, we will model component faults in terms of how they affect pressure and flow 

values with respect to normal levels during cluster instability and as well as how they 

can alter cluster topology. 

A pipe may be faulted in one of several ways: leaking, clogged, or blocked. If a 

pipe is clogged, it acts as an orifice, introducing resistance and lowering expected flow 

along the flowpath(s) of which it is part within an unstable cluster. If it is blocked, it 

acts like a closed valve, permitting no flow or pressure transmission and possibly 

creating an unexpected cluster boundary within the system. A leaking pipe similarly 

changes the architecture of the system, creating an orifice connection to sump0. An 

orifice may fail in one of two ways: blocked or open. When an orifice is blocked, it acts 

as a closed valve. If an orifice has failed open, it acts as a pipe, transmitting flow and 

pressure without resistance and, therefore, at higher than expected levels. A valve can 



fail in several ways: failed-open, failed-closed, clogged, or leaking. Valve faults are 

dependent upon the commanded state of the valve. If a valve is open, it can fail as 

failed-closed or clogged. In the first case, it acts like a closed valve, changing the 

commanded configuration; while in the second, it acts like an orifice, reducing expected 

flows. If a valve is closed, it can fail as failed-open or leaking, acting as a pipe or an 

orifice, respectively. In both cases, the fault alters the commanded configuration, 

most likely producing flows where none were expected. 

How can these component models, together with a cluster-based model of a 

system, assist in hypothesizing faulted components based upon observed symptoms? 

For a cluster in a stable state, there should be no flow and equal pressures are expected 

throughout. Symptoms that could arise in this context are a pressure above or below 

the expected value or a pressure that is changing, thereby indicating flow where none 

is expected. In all of these cases, leaking or failed open faults for valves on cluster 

boundaries are possible faults; the commanded configuration differs from the current 

system configuration in these cases. If pressure is low and decreasing, the suspected 

valves would be on boundaries between the affected cluster and neighboring clusters of 

lower pressure. A leak in a pipe within the cluster, merging the cluster with sump0, 

is also a possibility. If, on the other hand, pressure is abnormally high and/or 

increasing, then valves on boundaries with neighboring clusters of higher pressure 

are suspect. 

The cluster-based representation focusses our attention on valves at particular 

boundaries as the most likely faulted components. High or low pressure readings could 

actually be the result of a faulted pressure gauge that is reading consistently high or 

low. Externally generated heat, adding energy and thus increasing internal pressure 

throughout the system, may be considered as well (as is system cooling a possibile 

cause of low pressure symptoms). 



If the symptom arises while the affected cluster is in the unstable qualitative 

state, components on flowpaths are candidates for being faulted. If flow or pressure is 

lower than expected at some location, consider either clogged valves, orifices or pipes 

along the flowpath in the unstable cluster. If pressures are too high, consider orifices 

(or pressure regulators) that have failed open (or are biased high). Again the 

cluster-based representation focusses our attention: here on particular components 

along a flowpath within the unstable cluster. The cluster-based representation also 

serves as a basis for explaining why the components are suspected as being faulted. 

The faulted components are playing important roles in the system's operation, either 

forming part of a stable cluster's boundary or lying on the path of an intended flow 

within an unstable cluster of the system. 

The cluster-based representation can also assist us in generating plans in 

Observation Space to evaluate the presence of symptoms that could help distinguish 

between possible faults. For performing system monitoring and diagnosis, we assume 

that the hydraulic system is instrumented with sensors (e.g., pressure gauge) at 

particular points of interest that allow us to measure flow and pressure values. As an 

example of problem detection, an initial symptom of higher than expected pressure 

could be reported by a sensor. If a pressure sensor in a stable cluster is reading high, 

we can locate another pressure sensor in the same cluster (or open a valve to place 

another pressure sensor in the same cluster) and check if it reports the same high 

reading, thereby verifying that the initial sensor is reading correctly. If we suspect a 

certain valve on the boundary of what was to be a stable cluster is leaking and there is 

an open valve between the sensor reporting the unexpected, changing pressure and the 

possibly faulted valve, then we can close that other valve and check to see whether the 

pressure stabilizes. If it does, then the suspected valve is the faulted component; 

otherwise, it is not. These plans in Observation Space clearly depend upon a cluster- 



based representation of the system and upon fault models of the various components for 

their generation and rationalization. 

Troubleshooting and the ORS 

When we proposed this research, one of our stated goals was to account for 

elements of diagnostic procedures specified in the documentation for the ORS system. 

The primary diagnostic procedure we have focussed on is presented as Figure 3, taken 

from ORS documentation. Consideration of that procedure and the generation of 

explanations for the actions prescribed there were instrumental in our specification of 

the cluster-based representation scheme for hydraulic systems. Here we turn the 

process around, and complete our efforts by specification of a rule-based system that 

reasons in terms of a cluster-based representation to diagnose valve and gauge faults 

in hydraulic systems. A trace of the rules that fire during an individual diagnostic 

session provide a form of teleological explanation of the actions taken, in terms of 

underlying goals of the system. 

The architecture of the rule-based sytem we propose consists of a goal stack, an 

active memory, and a rule-set. The goal stack is used to hold the current goal (at its 

top) and to maintain prior goals for reconsideration as necessary in a last-in-first- 

out order. A goal is a simple propositional statement: the goal type is represented as 

the predicate, with elements from the cluster and component representations as 

specific arguments. Active memory holds the current configuration information (i.e., 

components, connections, valve settings), together with system measurements 

acquired during diagnosis (e.g., gauge readings or comparisons). Finally, the rule-set 

represents the diagnostic procedure to be followed. Each rule of the set consists of a 

goal condition, to be matched by the top of the goal stack, followed by specific 

configuration and measurement conditions, to be matched by contents of active 
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memory; the rule is completed by an action sequence to be performed if the rule is 

fired. 

The rule-set we have developed to diagnose a subset of valve and gauge faults is 

given in Appendix I. The rule-based system is cyclic in its action: first determining 

those rules that have their condition parts satisfied, selecting which of these rules to 

fire, and then performing the action part of the selected rule. Rules are considered in 

the order given in the appendix for possible selection and firing by the rule-based 

system. The use of a goal stack allows for the hierarchic, top-down development and 

execution of a diagnostic strategy. Further consideration of conditions will complete a 

specification of the diagnostic strategy, based on both component and cluster 

information, that we propose. 

The diagnostic system begins operation with a current goal of diagnose, and an 

active memory with configuration information and an initial symptom (measurement) 

that has triggered diagnosis. When the goal is diagnose ("diagnose rules"), the system 

will either complete with success or failure, attempt to perform a test (if one is 

pending), select a test (if a suspect is known and no test has been selected), or select a 

suspect (if none is under consideration). Selection of a suspect fault ("get-suspect 

rules") depends upon symptoms thus far observed; no new measurements are acquired 

without having a suspect in mind. Once a suspected fault is selected, a test must be 

found ("get-test rules") to further support, confirm, or contradict existence of the 

suspected fault. If no test exists, the fault can not be further supported and remains 

possible; another fault is then selected. 

If a test is found for a suspected fault, the system tries to perform actions ("do- 

test rules") that make up the test. lt is here that the real power of the cluster-based 

representeation is realized. It is often the case in complex systems that various 

controls must be manipulated to establish an appropriate context for a desired 

measurement to be taken. These manipulations can not be canned, as they must reflect 



the current state of the system. Very few diagnostic systems creared by research in 

artificial intelligence have the capability to produce plans for reconfiguring a system 

to establish conditions for test measurement performance. Our system is able to do 

this in a relatively straightforward manner, due to the cluster-based, structural 

abstraction. 

As an example, consider when we suspect a stuck gauge fault and are attempting to 

perform the stuck gauge test ("stuck-gauge-test rules"). The goal of the test is to find 

another gauge in the same cluster as the suspect gauge. If there is none, then the 

attempt is made to merge the cluster with a neighbor containing a gauge ("merge- 

cluster and merge-clusters rules"), by opening a valve between the two clusters. If 

there is a gauge in the cluster with the suspect, then the cluster must be stable. If the 

cluster is not stable, then a valve must be closed that breaks the flow path, but leaves 

the two gauges of interest in the same cluster ("stabilize-cluster rules"). Finally, 

when both gauges are in the same cluster, the user is requested to compare their 

pressure readings. If they differ, then the suspect fault has been supported: here, we 

take it to be confirmed sufficiently to suggest it for repair by concluding it is the 

problem. If the readings are the same, then the gauge is concluded to be ok, and another 

suspect must be found by popping back to the diagnose goal. 

Since the attempts at setting up the correct context for the gauge measurements 

may not be feasible, the rule set only plans to take the actions of opening and closing 

the various valves. The actions are saved as part of a plan list in active memory while 

the system updates its internal model of the system. The plan is only executed when it 

is found to be complete: this would amount to asking the user to perform the control 

and measurement actions on the hydraulic system (or by doing it automatically, if 

under computer control). If the attempt to perform the test fails, active memory is 

reset to the situation prior to attempting the test (RULE test-fail), which situation 

was checkpointed at the time the test was first considered (RULE do-test). 
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The rule set we present is not specific to the ORS model, but works for general 

hydraulic architectures made from the component types that we have discussed. It does 

not cover all possible faults in such systems, as outlined in a previous section, but 

demonstrates the means whereby such diagnostic procedures can be specified and the 

role played by cluster-level properties in those processes. 

Conclusion 

in this report, we have described a qualitative, cluster-based approach to the 

representation of hydraulic systems and demonstrated its potential for generating and 

explaining procedures. We have formalized many of our ideas and have implemented 

them as part of an interactive, computer-based system. The system allows for 

designing, displaying, and reasoning about hydraulic systems. Our interactive system 

has an interface consisting of three windows: a design/control window, a cluster 

window, and a diagnosis/plan window. 

Figure 4 present examples of the design/control window for the ORS system. The 

design/control window allows a user to construct component-level models of hydraulic 

systems. The window operation is menu-based and mouse-driven; a user selects a 

component type from a menu and places a new instance of that type on the window, 

interconnecting various components by pipe segments as desired. In addition, valves 

can be opened or closed by selection with the mouse in the design window. Figure 5 

presents the cluster window for the launch configuration with all valves closed Each 

time a valve is opened or closed the cluster graph in the cluster window is updated 

automatically. If a cluster is in an unstable qualitative state, the flowpath is marked 

by arrows on the component graph and the cluster is highlighted in the cluster graph. 

This is the case in Figure 6, where the ORS is in tank TK1 pressurization mode. 



I 

Figure 4. The Design Window of our System, 
with ORS Model shown 



0 pip3537 

Figure 5. The Design Window 
with Cluster Window 



Figure 6 presents a typical screen when using our hydraulic modeling and diagnosis 

system. 

The cluster window displays the current configuration for the hydraulic system 

in the design window as a graph of interconnected cluster nodes. The cluster graph 

bears topological resemblence to the component graph, as a cluster's node is positioned 

according to the center of mass of the cluster's components as they are displayed in the 

design window. An edge of the cluster graph is labelled by the valve(s) occurring on 

the boundary between the two clusters. The cluster graph display can be automatically 

updated as valves are opened or closed. A cluster node can be selected with the mouse 

and its components are highlighted in the design window. 

We believe the simultaneous display of the component and cluster graphs of a 

hydraulic system during system control by human operators is potentially a very 

important application of our ideas. A simplified view of the system, as presented by a 

cluster graph, can assist the operator in generating actions by focussing attention on 

relevant components and in understanding the effects that actions have on system 

configurations. The cluster graph can act as a guide to the operator's scan of the 

component graph. 

Mistakes in the interpretation of action effects are often primary factors in the 

occurrence of system failures involving human error. Many of these errors probably 

can be traced to misconceptions as to the current cluster configuration of a system. 

For instance, at Three Mile Island, cooling pumps were turned on but, due to closed 

valves, the pumps were not part of the cluster involving reactor cooling pipes; thus, 

the expected flow and cooling were not realized [14]. A cluster-based display could 

have made this error apparent to the operators. 

The diagnosidplan window allows a user to present standard diagnostic or 

operational goals to the system. If the goal is diagnosis, the system interacts with the 

user, commanding changes in system configuation and guage readings/comparisons to 



be made. When a plan goal is received, an operating plan is returned that is explained 

in terms of a cluster-based representation of the current system. We have completed 

an initial set of diagnostic rules, described in the preceding section. Operation 

planning rules have not been written, but would follow notions discussed earlier. 



References 

[l] Bobrow, D. (ed), Artificial Intelligence, Special Volume on Qualitative 
Modeling of Physical Mechanisms, 24 (1 -3), December, 1984; published as a book 

by MIT Press, September, 1985. 

[2] Brown, J.S. and deKleer, J., " A qualitative physics based on confluences", in 
[l], p7-84. 

[3] Davis, R., "Diagnostic reasoning based on structure and function", in [l], 
p347-4 1 0. 

[4] Farley, A., "A general model of troubleshooting and its application in 
computer support", Proceedings of the Firth International Workshop on Expert 

Systems and Their Application, May, 1985, Avignon. FR, p489-504. 

[5] Farley, A., "Diagnostic mechanism modeling", to appear in International 
Journal of Pattern Recognition and Artificial Intelligence, 3(2), June, 1989. 

[SI Genesereth, M.R., "The use of design descriptions in automated diagnosis", in 
[ l ] ,  p411-436. 

[7] Georgeff, M., "An expert system for representing procedural knowledge", 

SRI, AI Center Technical Report, 1985. 

[8] Hollan, J., Hutchins, E.L. and Weitzman, L. "STEAMER: An interactive 

inspectable simulation-based training system", AI Magazine, p15-27, Summer, 
1984. 

[9] Hammer, J., "An intelligent flight management aid for procedural execution", 

to appear in I€€€ Transactions on System, Man, and Cybernetics. 

11 01 Kuipers, B., "Commonsense reasoning about causality: deriving behavior 
from structure", in [ l ] ,  pl69-204. 



[ll] Lewis, C.M., "Rule-based analysis of pilot decisions", Proceedings of the 

Human Factors Society, 29th Annual Meeting, 1 985. 

[12] Lewis, C.M., "Issues in rule identification and logical induction", to appear 
in Proceedings of the 7985 /€E€ International Conference on Systems, Man, and 
Cybernetics, November, 1985. 

(131 Rouse, W.8. & Morris, N.M., "Understanding and avoiding potential 

problems in implementing automation", to appear in Proceedings of the 7985 /E€€ 

International Conference on Systems, Man, and Cybernetics, November, 1 985. 

[14] Rubenstein, E. "The accident that shouldn't have happened", /€€E Spectrum, 

16 (ll), p33-42, November, 1979. 

[15] Scarl, E.A., Jamieson, J.R., and Delaune, C.I., "Process monitoring and fault 
location at the Kennedy space center", unpublished research report, Mitre Corp. 

[16] Vere, S.A., "Planning with time: windows and durations for activities and 

goals", Technical Report, NASA Jet Propulsion Laboratory, Pasadena, CA, November, 

1981. 

[17] Yoon, W.C. and Hammer, J.M., "Aiding the operator during novel fault 
diagnosis", to appear in Proceedings of the 7985 /E€€ lnternational Conference on 
Systems, Man, and Cybernetics, November, 1985. 



APPENDIX I 

....................... 
~ o ~ ~ ~ o ~ ~ ~ ~ ~ ~ o ~ o o ) (  diagnose rules ....................... 

(define-rule done-fail 
(goal (diagnose)) 
(suspect no-more) 

(say "no fault found") 
(halt )) 

=> 

(define-rule done-faulted 
(goal (diagnose)) 
(faulted ?c ? f )  

(say "fault found:" ?c ?f )  
(halt 1) 

* 

(define-rule do-test 
(goal (diagnose)) 

(test ?t) 
(not (tried-test ?t)) 

(add-fact (tried-test ?t)) 

(push-goal (do-test ?t))) 

=3 

(remember-state) 

(define-rule find- t es ts 
(goal (diagnose)) 
(suspect ?c ? f )  
(not (ok ?c ?f)) 
(not (tried-all-tests ?c ?f)) 

(push-goal (get-test ?c ?f))) 
* 

(define-rule find-suspect 
(goal (diagnose)) 

(push-goal (get-suspect))) 
* 



.................. ,. .. 77,,,,...,,, ,, get-suspect rules ;; ;;; ;;;;; ;; ;;; ;; ;; ;;; ;; ;;;;;;;;;; 

(define- ru 1 e gauge-s t uc k - hi gh 
(goal (get-suspect)) 
(reading-high ?g) 
(not (ok ?g stuck-high)) 

(add-fact (suspect ?g stuck-high)) 
=> 

(pop-goal)) 

(define-rule gauge-stuck-low 
(goal (get-suspect)) 
(reading-low ?g) 
(not (ok ?g stuck-low)) 

(add-fact (suspect ?g stuck-low)) 
=> 

(pop-goal)) 

(define-rule valve-leaking 
(goal (get-suspect)) 
(reading-high ?g) 

(rising ?g) 
(in-cluster ?g ?c) 
(separates ?v ?c ?d) 
(is-stable ?c) 
(! (higher-pressure ?c ?d)) 
(not (suspect ?v ?g leaking)) 

(add-fact (suspect ?v ?g leaking)) . 
=3 

(pop-goal)) 

(define-rule no-more-suspects 
(goal (get-suspec t)) 

(add-fact (suspect no-more)) 
(pop-goal)) 

* 

(define-rule leaky-valve-test- 1 
(goal (get-test ?v ?g leaking)) 
(not (tried (leaking-valve-test- 1 ?v ?g))) 

(add-fact (test (leaking-valve-test- 1 ?v ?g))) 
* 

(pop-goal)) 

(define-rule stuck-high-gauge-test 
(goal (get-test ?g stuck-high)) 
(not (tried (stuck-gauge-test ?g))) 

(add-fact (test (stuck-gauge-test ?g))) 
(pop-goal)) 

=> 



(define-rule stuck-low-gauge-test 
(goal (get-test ?g stuck-low)) 
(not (tried (stuck-gauge-test ?g))) 

(add-fact (test (stuck-gauge-test ?g))) 
* 

(PoP-goal)) 

(define-rule no-more-tests 
(goal (get-test ?c ?f) )  

(add-fact (tried-all-tests ?c ?f))  
* 

(POP% oal)) 

.............................. test-fail rule ......................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ......................................... 
(define-rule test-fail 

(goal (do-test ?t)) 
(test-fail ?t) 

(recall-state) 
=> 

(pop-goal)) 

......................... ......................... do-test rules .................................. 

.................... ..,*, ~,,~~.~.,~,,.,,stuck-gauge-test rules;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

(de fine - rule gauge- h i g h-o k 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(is-stable ?c) 
(comparative-gauge-reading ?g ?h same) 
(suspect ?g stuck-high) 

(add-fact (ok ?g stuck-high)) 
* 

(PoP-goal)) 

(define-rule gauge-high-faulted 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(is-stable ?c) 

(comparative-gauge-reading ?g ?h different) 
(suspect ?g stuck-high) 

(add-fact (faulted ?g stuck-high)) 
=> 

(pop-goal)) 



. 

(define-rule gauge-low-ok 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(is-stable ?c) 
(comparative-gauge-reading ?g ?h same) 

(suspect ?g stuck-low) 

(add-fact (ok ?g stuck-low)) 
=3 

(pop-goal)) 

(define-rule gauge-low-faulted 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(is-stable ?c) 

(suspect ?g stuck-low) 

(add-fact (faulted ?g stuc k-lo w )) 

(comparative-gauge-reading ?g ?h different) 

(pop-goal)) 

(define-rule compare-gauges 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(is-stable ?c) 

(execute-plan) 
* 

(ask "Does gauge -A have the same pressure as gauge -A?" (?g ?h) 
(comparative-gauge-reading ?g ?h same) 
(comparative-gauge-reading ?g ?h different))) 

(define stabilize-cluster-fail 
(goal (do-test (stuck-guage-test ?g))) 
(fail (stabilize-component-cluster ?g ?h)) 

(add-fact (test-fail (stuck-gauge-test ?g)))) 
=3 

(define-rule stabilize-cluster 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?c) 
(not (is-stable ?c)) * 
(push-goal (stabilize-component-cluster ?g ?h))) 



(de fine rule me rge-c luster - f ai 1 
(goal (do- test (s tuck-g auge- tes t ?g))) 
(fail (merge-component-clusters ?g ?h)) 

(add-fact (test-fail (stuck-guage-test ?g)))) 
=> 

(define -rule merge -cl u s  t e r 
(goal (do-test (stuck-gauge-test ?g))) 
(in-cluster ?g ?c) 
(gauge ?h) 
(in-cluster ?h ?d) 
(separates ?v ?c ?d) 

(push-goal (merge-component-clusters ?g ?h))) 

(define-rule valve-faulty 
(goal (do-test (leaking-valve-test- 1 ?v ?g))) 
(no-longer-rising ?g) 

(add-fact (faulted ?v leaky)) 
(pop-goal)) 

=3 

(define-rule valve-ok 
(goal (do-test (leaking-valve-test- 1 ?v ?g))) 
(still-rising ?g) 

(add-fact (ok ?v leaky)) 
=-3 

(PoP-goal)) 

(define-rule test-valve 
(goal (do-test (leaking-valve-test- 1 ?v ?g))) 
(can-ask (leaking-valve-test-1 ?v ?g)) 

(execute-plan) 
=> 

(ask "Is --A still rising-%" (?g) 
(still-rising ?g) 

(no-longer-rising ?g))) 

(define-rule test-valve 
(goal (do-test (leaking-valve-test- 1 ?v ?g))) 
(fail (isolate-valve ?v ?g)) 

(add-fact (test-fail (leaking-valve-test-1 ?v ?g))) 
(PoP-goal)) 

=> 

(define-rule try-isolate-valve 
(goal (do-test (leaking-valve-test- 1 ?v ?g))) 

(push-goal (isolate-valve ?v ?g))) 
* 



....................... ....................... stabilize-cluster rules ................................. 

(define-rule close-valve 
(goal (stabilize-component-cluster ?g ?h)) 

(in-cluster ?g ?c) 
(tank ?t) 
(in-cluster ?t ?c) 
(valve ?v) 
(in-cluster ?v ?c) 
(! (on-flow-path ?v ?c)) 
(! (isolates ?v ?t ?g ?h)) 

(plan-to (close-valve ?v)) 
* 

(pop-goal)) 

(define-rule stabilize-fail 
(goal (stabilize-component-cluster ?g ?h)) 

(add-fact (fail (stabilize-component-cluster ?g ?h))) 
=3 

(pop-goal)) 

................... ................... merge-clusters rules ...................... 

(define-rule open-valve 
(goal (merge-component-clusters ?g ?h)) 

(in-cluster ?g ?c) 
(in-cluster ?h ?d) 
(closed-valve ?v) 
(separates ?v ?c ?d) 

(plan-to (open-valve ?v)) 
=3 

(pop-goal)) 

(define-rule merge-fail 
(goal (merge-component-clusters ?g ?h)) 

(add-fact (fail (merge-component-clusters ?g ?h))) 
* 

(pop-goal)) 

............... 
9 9 * * . . S 9 . ~ . 9 0 .  isolate-valve rules .................... 

(define-rule isolate-valve 
(goal (isolate-valve ?v ?g)) 
(separates ?v ?c ?d) 
(in-cluster ?g ?c) 
(! (higher-pressure ?d ?c)) 

(tank ?t) 
(in-cluster ?t ?d) 
(open-valve ?v2) 
(! (lies-between ?v2 ?t ?v)) 

(plan-to (close-valve ?v2)) 
(add-fact (can-ask (leaking-valve-test-1 ?v ?g))) 

* 

(pop-goal)) 



(de fine-rule is01 ate-v alve- f ail 
(goal (isolate-valve ?v ?g)) - 

(add-fact (fail (isolate-valve ?v ?g))) 
(PoP-goal)) 


